If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-q^2-60q+4000
We move all terms to the left:
0-(-q^2-60q+4000)=0
We add all the numbers together, and all the variables
-(-q^2-60q+4000)=0
We get rid of parentheses
q^2+60q-4000=0
a = 1; b = 60; c = -4000;
Δ = b2-4ac
Δ = 602-4·1·(-4000)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-140}{2*1}=\frac{-200}{2} =-100 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+140}{2*1}=\frac{80}{2} =40 $
| 4x+5+x+160=180 | | 14j+-20j+-11=-5 | | 15x-(9x-2)=8 | | 5k−3k+2=14 | | 16d=4 | | -20k+10k=20 | | 2c+5c=7 | | 6m+2m=16 | | 3x^2-x-8=-8 | | .25x=5.32 | | 3x+5+61+39=180 | | 1x+11=8x=20 | | 2.4/0.6=170/x | | 0=17x+1 | | 3/n+7-3=19-4 | | 5c+2c+8c=180 | | -4x+-6x=-50 | | 10x-3(2x-8)=56 | | y+(y+17)+90+111=360 | | 4x+125+125+90=540 | | 7d-9+3-1=21 | | -6+4u=-2 | | 3n+15=8 | | -2x+4+x=-17 | | 90+40=j | | 0=-32x-26 | | 10^4x=18 | | -136+15x=74 | | 3y-7(y+5)=-35 | | -136+15x=75 | | x+68+44=180 | | 2(y+7)=6y-6 |